
Improving ROS packages code quality
with a temporal extension of first-order logic

David Come, Julien Brunel and David Doose

July 6, 2018

1 / 20

Introduction and context

Robots, Robots everywhere

2 / 20

Introduction and context

Entreprise 101

Industrial goal

create value.

Value
features that people are willing to pay for

The features must

fit the users’ needs

be defect-free

cost as little as possible

3 / 20

Introduction and context

Entreprise 101

Industrial goal

create value.

Value
features that people are willing to pay for

The features must

fit the users’ needs

be defect-free

cost as little as possible

3 / 20

Introduction and context

Entreprise 101

Industrial goal

create value.

Value
features that people are willing to pay for

The features must

fit the users’ needs

be defect-free

cost as little as possible

3 / 20

Introduction and context

Entreprise 101

Industrial goal

create value.

Value
features that people are willing to pay for

The features must

fit the users’ needs

be defect-free

cost as little as possible

3 / 20

Introduction and context

Validation and Verification

Validation
Did we build the right product ?

Verification
Did we build the product right ?

Methods

Tests

Code generation

Static analysis

Code review

4 / 20

Introduction and context

Validation and Verification

Validation
Did we build the right product ?

Verification
Did we build the product right ?

Methods

Tests

Code generation

Static analysis

Code review

4 / 20

Introduction and context

Style matters

Beyond correctness

Software should be correct and well-written

Well-written means

Following idioms from the programming language

Domain guidelines

Project coding guide

Library/Application specific patterns

5 / 20

Introduction and context

Style matters

Beyond correctness

Software should be correct and well-written

Well-written means

Following idioms from the programming language

Domain guidelines

Project coding guide

Library/Application specific patterns

5 / 20

Introduction and context

Our goal

goal

Finding user-provided code patterns in robotics software

Patterns

are not (necessarily) bugs

just suspicious code that hinder quality / does not respect good
programming practices.

6 / 20

Introduction and context

Our goal

goal

Finding user-provided code patterns in robotics software

Patterns

are not (necessarily) bugs

just suspicious code that hinder quality / does not respect good
programming practices.

6 / 20

Introduction and context

Main aspects of our proposition

Main aspects

Need to let the user specify
Formal approach based on logic

unambiguous meaning to the specification
Complete code exploration

7 / 20

Introduction and context

Running Example

Callbacks in a ROS package

All callbacks are private member functions

void cb(const Msg& msg){/*...*/}
int main(int argc ,char* argv[}){

ros::init(argc ,argv);
NodeHandle n;
//...
n.subscribe("topic" ,10,&cb);

}

8 / 20

FO++

FO++: Overview

A temporal extension of first-order logic, extension similar to
parametrization

It has well-defined semantics and is independent of any programming
language

Used as a specification formalism for Pangolin

Part of the logic FO Temporal

Use
reasoning about the express properties over execution
structure of the code paths in functions CFG.

9 / 20

FO++

First-order part of FO++

Definition
First-order logic = connectives, quantification and predicates

Example

There is a free function in which there is a locally declared variable whose type
is NodeHandle

∃m(isFreeFunction(m)∧
∃n(locallyDeclared(n,m)∧hasType(n,NodeHandle)))

10 / 20

FO++

First-order part of FO++

Definition
First-order logic = connectives, quantification and predicates

Example

There is a free function in which there is a locally declared variable whose type
is NodeHandle

∃m(isFreeFunction(m)∧
∃n(locallyDeclared(n,m)∧hasType(n,NodeHandle)))

10 / 20

FO++

First-order part of FO++

Definition
First-order logic = connectives, quantification and predicates

Example

There is a free function in which there is a locally declared variable whose type
is NodeHandle

∃m(isFreeFunction(m)∧
∃n(locallyDeclared(n,m)∧hasType(n,NodeHandle)))

10 / 20

FO++

Temporal logics

11 / 20

FO++

Temporal properties in FO++

Restricted to two special predicates modelsCTL(x ,ψ) and modelsLTL(x ,ψ)

Evaluation structure: the CFG of functions

PREDCFG
User-provided predicates which describe a fragment of AST that can be found
within the CFG of a function.

Example sub(n,c) true on states with call such as n.subscribe(_,_,c)

12 / 20

FO++

Temporal properties in FO++

Restricted to two special predicates modelsCTL(x ,ψ) and modelsLTL(x ,ψ)

Evaluation structure: the CFG of functions

PREDCFG
User-provided predicates which describe a fragment of AST that can be found
within the CFG of a function.

Example sub(n,c) true on states with call such as n.subscribe(_,_,c)

12 / 20

FO++

Temporal properties in FO++

Restricted to two special predicates modelsCTL(x ,ψ) and modelsLTL(x ,ψ)

Evaluation structure: the CFG of functions

PREDCFG
User-provided predicates which describe a fragment of AST that can be found
within the CFG of a function.

Example sub(n,c) true on states with call such as n.subscribe(_,_,c)

12 / 20

FO++

ROS callbacks formalization

Incomplete informal description

All callbacks are private member functions

13 / 20

FO++

ROS callbacks formalization

Complete informal description

There is a free function, in which, there is finally a call to subscribe on a
NodeHanlde variable such as a non-private function is passed as third
argument.

13 / 20

FO++

ROS callbacks formalization

Complete informal description

There is a free function, in which, there is finally a call to subscribe on a
NodeHanlde variable such as a non-private function is passed as third
argument.

It formally express as

∃m(isFreeFunction(m)

∧ ∃n(localyDeclared(n,m)∧hasType(n,NodeHandle)

∧ ∃c(allFunctions(c)∧modelsCTL(m,EFsub(n,c))

∧ ¬isPrivate(c)))) (1)

13 / 20

Pangolin

Pangolin

Two model-checking algorithms available

fast mode : stops at first counter example found

complete mode : complete code exploration

Availlable at: https://gitlab.com/Davidbrcz/Pangolin

14 / 20

Pangolin

Analysis result

Pangolin evaluates a formula to

True: the pattern is absent

False: two cases:
False positive: a legitimate code turns out to be a counter-example for the
formula because

unforeseen cases
not the intended meaning
Pangolin limitations

True positive: the code is truly suspicious.

The user has to review the code

15 / 20

Pangolin

Analysis result

Pangolin evaluates a formula to

True: the pattern is absent
False: two cases:

False positive: a legitimate code turns out to be a counter-example for the
formula because

unforeseen cases
not the intended meaning
Pangolin limitations

True positive: the code is truly suspicious.

The user has to review the code

15 / 20

Pangolin

Analysis result

Pangolin evaluates a formula to

True: the pattern is absent
False: two cases:

False positive: a legitimate code turns out to be a counter-example for the
formula because

unforeseen cases
not the intended meaning
Pangolin limitations

True positive: the code is truly suspicious.

The user has to review the code

15 / 20

Pangolin

Analysis result

Pangolin evaluates a formula to

True: the pattern is absent
False: two cases:

False positive: a legitimate code turns out to be a counter-example for the
formula because

unforeseen cases
not the intended meaning
Pangolin limitations

True positive: the code is truly suspicious.

The user has to review the code

15 / 20

Increasing ROS packages code quality

Rules

1 All user-provided global variables must be constant

2 There should be no local non-constant variable passed to a function and
never used again

3 There should be not call to std::cout<<, std::cerr<< in any function.
No std::ofstream variables should be created

4 a If the publisher is local to a function, then there is a call to publish within that
function

b If the publisher is an attribute, then there is a member function in which
there is a call to publish on it.

5 All callbacks are private member functions.

16 / 20

Increasing ROS packages code quality

Experiments results

Corpus:

25 common ROS packages (172 files)

3 categories : Navigation, Perception, LIDAR

Results overview
218 defects found:

179 global variables
4 variables with a scope too wide
4 uses of standard streams
9 member ROS publishers not used as specified
22 public callbacks

11 false positives, False positive rate of 5%

17 / 20

Increasing ROS packages code quality

ROSApplication pattern

struct ROSApplication{
ROSApplication():rate(10){init();}
void run(){

while(ros::ok()){
ros::spinOnce();
computation();
rate.sleep();

}}
private:

void init(){
pub = nh.advertise <Msg >("pub_topic" ,10);
sub = nh.subscribe("sub_topic",10,

&ROSApplication::callback ,this);
}
void callback(Msg const& m){/*... */ }

void computation(){
//...
Msg m;
pub.publish(m);

}
ros::NodeHandle nh ;
ros::Publisher pub ;
ros::Subscriber sub;
ros::Rate rate ;

};
int main(int argc , char *argv[]) {

ros::init(argc ,argv);
ROSApplication app;
app.run();

}

18 / 20

Increasing ROS packages code quality

Pattern formalization

Consitant ROS communication
To centralize topics related operation, there is an init method in which each
publisher and subscriber is affected. Also, all constructors should call init to
ensure the publishers/subscribers are always affected.

∃c (isClass(c)∧name(c,ROSApplication)∧
∃i(isMemFctOf(i,c)∧name(i, init)∧
(∀d (isConstructorOf(d ,c)⇒ modelsCTL(d ,AFcall(i))))∧
∀p(isAttributeOf(p,c)∧hasType(p,Publisher)⇒
(∃n(isAttributeOf(n,c)∧hasType(n,NodeHandle)∧
modelsCTL(i, AF(aPub(p,n))∧

AG(aPub(p,n))⇒ AX AG¬aPub(p,n)))))))

19 / 20

Increasing ROS packages code quality

Pattern formalization

Consitant ROS communication
To centralize topics related operation, there is an init method in which each
publisher and subscriber is affected. Also, all constructors should call init to
ensure the publishers/subscribers are always affected.

∃c (isClass(c)∧name(c,ROSApplication)∧
∃i(isMemFctOf(i,c)∧name(i, init)∧
(∀d (isConstructorOf(d ,c)⇒ modelsCTL(d ,AFcall(i))))∧
∀p(isAttributeOf(p,c)∧hasType(p,Publisher)⇒
(∃n(isAttributeOf(n,c)∧hasType(n,NodeHandle)∧
modelsCTL(i, AF(aPub(p,n))∧

AG(aPub(p,n))⇒ AX AG¬aPub(p,n)))))))

19 / 20

Increasing ROS packages code quality

Conclusion and future work

Improving ROS packages code quality

Looking for suspicious patterns in a code base

A specification formalism: FO++

A verification engine: Pangolin

Analyzed 25 packages, ROSApplication pattern for future packages

Future work
Improved user input language

Interprocedural and multi-file analysis

20 / 20

Increasing ROS packages code quality

Conclusion and future work

Improving ROS packages code quality

Looking for suspicious patterns in a code base

A specification formalism: FO++

A verification engine: Pangolin

Analyzed 25 packages, ROSApplication pattern for future packages

Future work
Improved user input language

Interprocedural and multi-file analysis

20 / 20

	Introduction and context
	FO++
	Pangolin
	Increasing ROS packages code quality

