

Architecture de pilotage de drones MAVLink avec ROS

Thomas FUHRMANN

20 juin 2018

Plan

- Introduction
 - Objectif
 - o Comment on fait?
- Hardware
- Software
- Architecture logicielle de contrôle
- Vol de drones en flotte
- Conclusion

Introduction Objectif

Démonstration drone Intel - JO d'hiver 2018 - PyeongChang

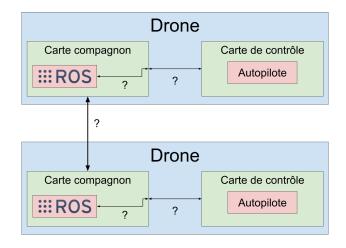
Introduction Objectif

- Comment réaliser cette démonstration avec ROS ?
 - ROS et les drones
 - Communication entre les drones
 - o Algorithmes de gestion de flotte
- Cadre d'application : projet FUI AIRMES
 - Drones hétérogènes coopérant en flotille
 - Basé sur ROS
 - Heudiasyc chargé de la communication et la navigation

Introduction Comment on fait?

Hardware

- Choisir un drone
- Choisir une carte de contrôle
- Choisir une carte compagnon (facultatif)


Software

- Échanger des données entre les deux cartes
- Remonter les données du drone à ROS
- o Faire communiquer les drones entre eux
- Gérer la navigation en flotte

Introduction Comment on fait?

Plan

- Introduction
- Hardware
 - Sélection du drone
 - Choix de la carte de contrôle
 - o Choix de la carte compagnon
- Software
- Architecture logicielle de contrôle
- Vol de drones en flotte
- Conclusion

Hardware Choix du drone

- Drone complet (DJi, Parrot, Intel Aero, ...)
- Drone en kit
- Drone à concevoir et fabriquer

DJi Phantom

Intel Aero

Drone AIRMES

Parrot Bebop 2

Choix de la carte de contrôle

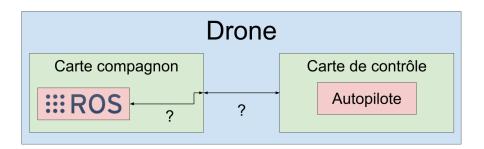
- Souvent appelée autopilote
 - Arduino
 - Pixhawk
 - Navio
 - Erle Brain

o ...

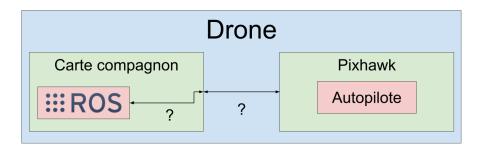
Arduino Mega

Emlid Navio

Erle brain 2



Pixhawk 1

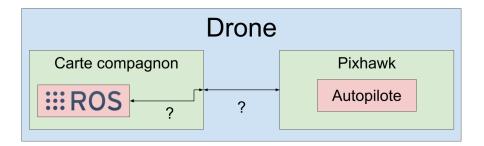

Hardware Choix de la carte de contrôle

Hardware Choix de la carte de contrôle

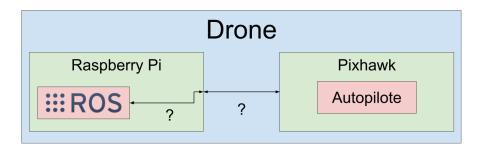
Hardware Choix de la carte compagnon

- Pour quoi faire?
 - Décupler la puissance de calcul
 - Avoir un système d'exploitation
 - Ajouter des entrées / sorties
- Cartes type
 - Raspberry Pi
 - Beagle Bone

Raspberry Pi



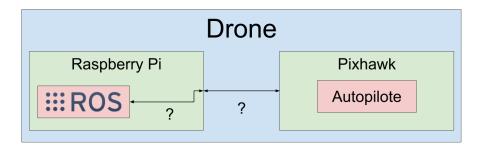
Beagle Bone


Hardware Choix de la carte compagnon

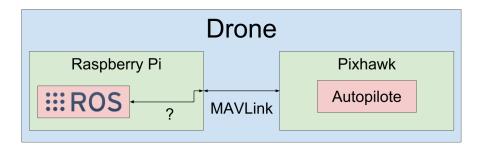
Hardware Choix de la carte compagnon

Plan

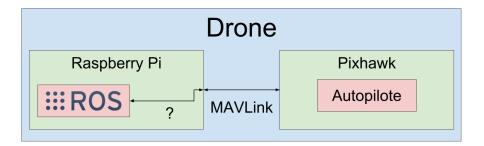
- Introduction
- Hardware
- Software
 - Communication entre les cartes
 - Choix autopilote
 - Intégration ROS
- Architecture logicielle de contrôle
- Vol de drones en flotte
- Conclusion


Software Communication entre les cartes

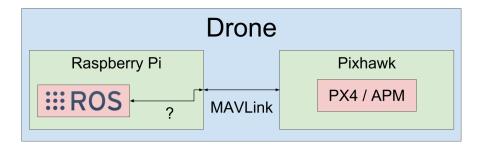
- Liaison souvent série entre les cartes
- Nécessité d'adopter un protocole de communication
 - Protocole maison
 - Procole MAVLink
 - o ...
- Protocole MAVLink
 - Micro Aerial Vehicle Link
 - o Protocole léger, pensé pour la communication série
 - Basé sur des messages générés type header-only
 - Check CRC intégré
 - Massivement adopté et open-source


Software Communication entre les cartes

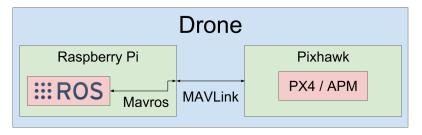
Software Communication entre les cartes


Software Choix autopilote

- Logiciel qui tourne sur la carte de contrôle
- Pilote le drone
- Interagit avec le matériel
- Plusieurs possibilités
 - Autopilote propriétaire livré avec le drone
 - Autopilote compatible MAVLink (PX4, ArduPilot)
 - Autopilote maison
 - o ..

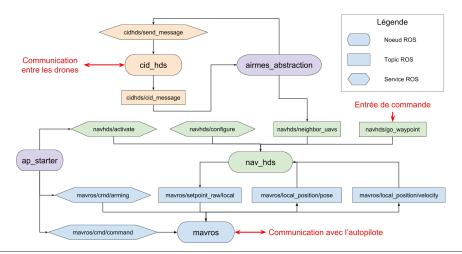

Software Choix autopilote

Software Choix autopilote



Software Et ROS dans tout ça?

- Tourne (souvent) sur la carte compagnon
- Manque le lien entre ROS et le protocole de communication
 - Si MAVLink : package mavros
 - Sinon : à vous de jouer !
- C'est bon, ça communique de bout en bout!


Plan

- Introduction
- Hardware
- Software
- Architecture logicielle de contrôle
 - Système macro
 - Module de communication
 - Module de navigation
- Vol de drones en flotte
- Conclusion

Architecture logicielle de contrôle Système macro

Architecture logicielle de contrôle Système macro

- Système logiciel développé en interne pour le projet AIRMES
- Nœuds du système
 - o mavros : communication avec l'autopilote
 - cid_hds : module de communication entre les drones
 - nav_hds : module de navigation et de gestion de la formation
 - o ap_starter : module de décollage du drone
 - airmes_abstraction : module qui implémente les fonctionnalités minimales de l'architecture AIRMES

Architecture logicielle de contrôle Module de communication

- Comment faire communiquer 2 systèmes ROS dans un réseau sans fil ?
 - Package multimaster
 - Logiciel utilisant le format de message ROS
 - Logiciel de communication avec un format autre
- Package ROS cid_hds développé au laboratoire
 - Module de communication basé socket
 - Format de message à la discrétion du client
 - Fonctionnalités avancées pour les réseaux sans fil
 - Diffusion fiable
 - . Communication à plusieurs sauts

Architecture logicielle de contrôle Module de navigation

- Package nav_hds développé au laboratoire
- Algorithmes basés sur la position des autres drones
 - Gestion de l'anti-collision entre les drones
 - Gestion de formations type leader-follower
- Guidage du drone
 - Commande en position cartésienne et vitesse
 - Autopilote chargé d'atteindre la positon demandée

Plan

- Introduction
- Hardware
- Software
- Architecture logicielle de contrôle
- Vol de drones en flotte
 - Contraintes
 - Résultat
- Conclusion

Vol de drones en flotte Contraintes

- Réactivité des drones
- Référentiel commun pour tous les drones
 - Position des drones disponible dans leur référentiel
 - Déterminer un point cartésien comme origine d'un référentiel commun
- Retards induits par le système complet
 - Temps de réaction de l'autopilote du drone
 - Latence dans l'échange de position liée au réseau sans fil
 - o Fréquence de la boucle de contrôle du maintient en formation

Vol de drones en flotte Résultat

 Formation leader-follower en volière intérieure avec système Optitrack

Démonstration formation leader-follower - Laboratoire Heudiasyc

Plan

- Introduction
- Hardware
- Software
- Architecture logicielle de contrôle
- Vol de drones en flotte
- Conclusion

Conclusion

- ROS avec les drones, c'est possible!
 - Écosystème MAVLink
 - Ajout d'une carte compagnon s'il manque de la puissance
- Selon l'application, c'est plus ou moins adapté
 - Communication sans fil entre les drones
 - Retards liés au système complet

Laboratoire Heudiasyc

